Discrete Painlevé I and singularity confinement in projective space
نویسندگان
چکیده
منابع مشابه
The Discrete Painlevé I Hierarchy
The discrete Painlevé I equation (dPI) is an integrable difference equation which has the classical first Painlevé equation (PI) as a continuum limit. dPI is believed to be integrable because it is the discrete isomonodromy condition for an associated (single-valued) linear problem. In this paper, we derive higher-order difference equations as isomonodromy conditions that are associated to the ...
متن کاملStokes phenomena in discrete Painlevé I.
In this study, we consider the asymptotic behaviour of the first discrete Painlevé equation in the limit as the independent variable becomes large. Using an asymptotic series expansion, we identify two types of solutions which are pole-free within some sector of the complex plane containing the positive real axis. Using exponential asymptotic techniques, we determine Stokes phenomena effects pr...
متن کاملBlending two discrete integrability criteria : singularity confinement and algebraic entropy
We confront two integrability criteria for rational mappings. The first is the singularity confinement based on the requirement that every singu-larity, spontaneously appearing during the iteration of a mapping, disappear after some steps. The second recently proposed is the algebraic entropy criterion associated to the growth of the degree of the iterates. The algebraic entropy results confirm...
متن کاملSingularity Confinement and Algebraic Integrability
Two important notions of integrability for discrete mappings are algebraic integrability and singularity confinement, have been used for discrete mappings. Algebraic integrability is related to the existence of sufficiently many conserved quantities whereas singularity confinement is associated with the local analysis of singularities. In this paper, the relationship between these two notions i...
متن کاملDiscrete Painlevé Equations and Random Matrix Averages
The τ-function theory of Painlevé systems is used to derive recurrences in the rank n of certain random matrix averages over U (n). These recurrences involve auxilary quantities which satisfy discrete Painlevé equations. The random matrix averages include cases which can be interpreted as eigenvalue distributions at the hard edge and in the bulk of matrix ensembles with unitary symmetry. The re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos, Solitons & Fractals
سال: 2000
ISSN: 0960-0779
DOI: 10.1016/s0960-0779(98)00266-5